Химия

Дата: 17.11.2023

Группа 2-Ст

Тема: Классификация неорганических веществ. Кислоты

Задание: Изучить материал. Ответить письменно на вопросы № 1,2,3,4.

Работу отправить на электронную почту: galina.ch65@mail.ru

5.1. КИСЛОТЫ В СВЕТЕ ТЕОРИИ ЭЛЕКТРОЛИТИЧЕСКОЙ ДИССОЦИАЦИИ

Кислоты — это электролиты, которые диссоциируют на катионы водорода и анионы кислотного остатка.

Классификация кислот

Кислоты — это многочисленный класс соединений, а потому нуждается в классификации, т.е. делении на группы по определенным признакам. Классификация кислот по разным признакам приведена в табл. 5.1.

Таблица 5.1. Классификация кислот

Признак классификации	Группа кислот	Примеры
Наличие атома кислорода	Кислородсодер- жащие	H ₂ SO ₄ , HNO ₃ , H ₃ PO ₄
	Бескислородные	H ₂ S, HCl, HCN
Основность (число атомов водорода в молекуле, спо- собных замещаться на ме- талл)	Одноосновные	HCl, HNO ₃
	Двухосновные	H ₂ S, H ₂ SO ₃ , H ₂ CO ₃
	Трехосновные	H ₃ PO ₄
Растворимость	Растворимые	H ₂ SO ₄ , HNO ₃ , HBr
	Нерастворимые	H ₂ SiO ₃

Признак классификации	Группа кислот	Примеры
Летучесть	Летучие	HCl, H ₂ S
	Нелетучие	H ₂ SO ₄ , H ₂ SiO ₃
Степень электролитической диссоциации	Сильные $(\alpha \rightarrow 1)$	H ₂ SO ₄ , HCl, HNO ₃
	Слабые ($\alpha \rightarrow 0$)	H ₂ S, H ₂ CO ₃
Стабильность	Стабильные	H ₂ SO ₄ , H ₃ PO ₄ , HCl
	Нестабильные	H ₂ CO ₃ , H ₂ SO ₃ , H ₂ SiO ₃

Химические свойства кислот

Кислый вкус, действие на индикаторы, электрическая проводимость, взаимодействие с металлами, основными и амфотерными оксидами, основаниями и солями — все эти свойства являются общими для неорганических кислот. Общие свойства кислот определяются их диссоциацией с образованием катионов водорода.

Изменение окраски индикаторов (лабораторный опыт № 7).

В растворах кислот индикаторы изменяют свою окраску.

Взаимодействие металлов с растворами кислот (лабораторный опыт № 8). Это взаимодействие происходит при соблюдении ряда условий:

 металл должен находиться в ряду напряжений левее водорода;

 в результате реакции должна образоваться растворимая соль, так как в противном случае она покроет металл пленкой и доступ кислоты к поверхности металла прекратится;

• для этих реакций не рекомендуется использовать щелочные

металлы (Почему?);

 концентрированная серная кислота и азотная кислота любой концентрации взаимодействуют с металлами по-особому.

Например, при взаимодействии соляной кислоты с цинком образуется водород:

$$Zn + 2HCl = ZnCl_2 + H_2$$

 $Zn + 2H^+ = Zn^{2+} + H_2$

Концентрированная серная кислота и азотная кислота любой концентрации взаимодействуют с металлами, стоящими в ряду напряжений до водорода и после водорода, при этом никогда не выделяется водород. В результате реакций этих кислот с металла-

ми образуются соль, вода и продукт восстановления сульфат- или нитрат-анионов. Так, при взаимодействии концентрированной серной кислоты с медью образуется оксид серы(IV):

$$Cu + 2H_2SO_4(конц.) = CuSO_4 + SO_2 + 2H_2O$$

При взаимодействии концентрированной азотной кислоты с медью выделяется бурый оксид азота(IV):

$$Cu + 4HNO_3(конц.) = Cu(NO_3)_2 + 2NO_2 + 2H_2O$$

Аналогичная реакция меди с разбавленной азотной кислотой дает бесцветный оксид азота(II) в качестве продукта восстановления нитрат-ионов:

$$3Cu + 8HNO_3(pa36.) = 3Cu(NO_3)_2 + 2NO + 4H_2O$$

Концентрированная серная кислота обугливает органические вещества (цв. вклейка, рис. 12), так как является очень гигроскопичной. (Вспомните правило разбавления концентрированной серной кислоты!)

Взаимодействие кислот с оксидами металлов (лабораторный опыт № 9). С основными и амфотерными оксидами взаимодействуют все сильные кислоты; например:

$$CuO + 2HNO_3 = Cu(NO_3)_2 + H_2O$$

$$CuO + H_2SO_4 = CuSO_4 + H_2O$$

или общее ионное уравнение реакции:

$$CuO + 2H^+ = Cu^{2+} + H_2O$$

Взаимодействие кислот с гидроксидами металлов (лабораторный опыт № 10). С основаниями (щелочами и нерастворимыми в воде основаниями) и амфотерными гидроксидами взаимодействуют все кислоты:

$$NaOH + HNO_3 = NaNO_3 + H_2O$$

 $H^+ + OH^- = H_2O$
 $Cu(OH)_2 + H_2SO_4 = CuSO_4 + 2H_2O$
 $Cu(OH)_2 + 2H^+ = Cu^{2+} + 2H_2O$

Взаимодействие кислот с солями (лабораторный опыт № 11). С солями кислоты взаимодействуют, если в результате реакции образуется осадок или газ. Качественной реакцией на галогенид-ионы $X^- = Cl^-$, Br^- , I^- (кроме ионов F^-) является реакция с нитратом серебра(I) (точнее — с катионами серебра(I), так как $AgNO_3 = Ag^+ + NO_3^-$):

$$Ag^+ + X^- = AgX \downarrow$$

Качественной реакцией на серную кислоту и ее соли является реакция с раствором соли бария:

$$H_2SO_4 + BaCl_2 = BaSO_4 \downarrow + 2HCl$$

 $SO_4^{2-} + Ba^{2+} = BaSO_4 \downarrow$

Качественной реакцией на соли угольной кислоты (карбонатили гидрокарбонат-ионы) является их взаимодействие с кислотами:

$$Na_2CO_3 + 2HNO_3 = 2NaNO_3 + H_2O + CO_2 \uparrow$$

 $CO_3^{2-} + 2H^+ = H_2O + CO_2 \uparrow$

Основные способы получения кислот

Бескислородные кислоты получают двумя основными способами.

Первый способ заключается в синтезе соответствующих водородных соединений неметаллов из простых веществ с последующим растворением их в воде. Так в промышленности получают хлороводородную (соляную) кислоту:

$$H_2 + Cl_2 = 2HCl$$

Аналогично можно получать и другие галогеноводородные кислоты.

Второй способ заключается в вытеснений галогеноводородов из твердых солей концентрированной серной кислотой:

$$NaCl + H_2SO_4 = NaHSO_4 + HCl$$

или

$$2NaCl + H2SO4 = Na2SO4 + 2HCl$$

Кроме бескислородных кислот вытеснением из солей серной кислотой получают и некоторые кислородсодержащие кислоты, например фосфорную:

$$Ca_3(PO_4)_2 + 3H_2SO_4 = 3CaSO_4 + 2H_3PO_4$$

В последнем случае кислоту отделяют от малорастворимого сульфата кальция фильтрованием или отстаиванием. Поскольку получающаяся ортофосфорная кислота загрязнена примесями, ее ис-

пользуют для производства фосфорных удобрений.

Чистую фосфорную кислоту получают термическим способом в несколько стадий, используя в качестве сырья фосфат кальция. Из него вначале получают фосфор, который окисляют до оксида фосфора(V), а затем последний растворяют в воде:

$$Ca_3(PO_4)_2 + 3SiO_2 + 5C = 3CaSiO_3 + 2P + 5CO$$

 $4P + 5O_2 = 2P_2O_5$
 $P_2O_5 + 3H_2O = 2H_3PO_4$

Аналогично взаимодействием кислотного оксида с водой получают многие другие кислородсодержащие кислоты:

$$SO_3 + H_2O = H_2SO_4$$

Азотную кислоту получают растворением в воде оксида азота(IV) в присутствии кислорода:

$$4NO_2 + 2H_2O + O_2 = 4HNO_3$$

Малорастворимую кремниевую кислоту можно получить реакцией обмена между растворимым в воде силикатом и, например, соляной кислотой:

$$Na_2SiO_3 + 2HCl = H_2SiO_3 \downarrow + 2NaCl$$

Неорганические кислоты широко используют в промышленности.

Серную кислоту H_2SO_4 применяют для получения солей, красителей, удобрений, взрывчатых веществ, лекарств, для очистки нефтепродуктов, травления металлов. Раствор серной кислоты в качестве электролита используется в свинцовых аккумуляторах.

Соляную кислоту HCl используют для получения ее солей, обработки руд, травления металлов, в химическом синтезе. Очень разбавленный раствор соляной кислоты употребляют в лечебных

целях при пониженной кислотности желудка.

Фосфорная кислота H₃PO₄ в отличие от серной и соляной не такая сильная и не столь агрессивная. Тщательно очищенная фосфорная кислота применяется даже в пищевой промышленности для подкисления напитков. Многотоннажное производство фосфорной кислоты началось после того, как ее соли стали применять в качестве удобрений.

- Дайте определение кислотам исходя из их состава и с точки зрения теории электролитической диссоциации.
 - 2. На какие группы делят кислоты?

 Исходя из принципов классификации кислот дайте полную характеристику азотной и фосфорной кислотам.

 Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

$$Cl_2 \rightarrow HCl \rightarrow NaCl \rightarrow AgCl$$

- *5. На полную нейтрализацию 110 г раствора серной кислоты потребовалось 80 г 10%-го раствора гидроксида натрия. Рассчитайте массовую долю кислоты в исходном растворе.
 - *6. Выведите формулу кислоты, если известно, что в ее состав

входит 2,13 % водорода, 29,79 % азота и 68,08 % кислорода.

 К 980 мл 40%-го раствора серной кислоты (плотность 1,3 г/мл) добавили 120 мл воды. Найдите массовую долю кислоты в полученном растворе.

8. Как определить наличие кислоты в продуктах питания?

5.2. ОСНОВАНИЯ В СВЕТЕ ТЕОРИИ ЭЛЕКТРОЛИТИЧЕСКОЙ ДИССОЦИАЦИИ

■ Основания — это электролиты, которые диссоциируют на катионы металла и анионы гидроксогрупп.

Классификация оснований

Принципы классификации оснований аналогичны принципам классификации кислот, в чем вы можете убедиться, познакомившись с табл. 5.2.

Таблица 5.2. Классификация оснований

Признак классификации	Группа оснований	Примеры
Наличие атома кислорода	Кислородсодер- жащие	KOH, Ca(OH) ₂
	Бескислородные	NH ₃ ·H ₂ O